Skip to main content

Getting access

  1. Register at app.aimon.ai
  2. Request access to Dataframer at [email protected]
  3. Get your API key from the dashboard (Settings → API Keys)
  4. Set the environment variable:
export DATAFRAMER_API_KEY="your-api-key"

Python SDK

Install the SDK:
pip install pydataframer
Quick taste:
from dataframer import Dataframer

client = Dataframer()  # uses DATAFRAMER_API_KEY env var

spec = client.dataframer.specs.create(
    name="Customer Support Tickets",
    generation_objectives="Generate realistic customer support tickets...",
)
# ... poll for completion, start a run, download results
See the Basic Python Workflow tutorial for a complete, runnable example.

MCP

MCP lets AI assistants (Claude Code, Cursor, etc.) interact with Dataframer directly.

Claude Code

claude mcp add --transport http \
  --header "Authorization: Bearer $DATAFRAMER_API_KEY" \
  --scope user dataframer https://df-api.dataframer.ai/mcp
Unlike the raw API, MCP also provides your AI assistant with detailed instructions on how to use Dataframer effectively — so it can guide you through the entire workflow conversationally.

Next steps